Semicomputable function

In computability theory, a semicomputable function is a partial function  f�: \mathbb{Q} \rightarrow \mathbb{R} that can be approximated either from above or from below by a computable function.

More precisely a partial function  f�: \mathbb{Q} \rightarrow \mathbb{R} is upper semicomputable, meaning it can be approximated from above, if there exists a computable function  \phi(x,k)�: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}, where x is the desired parameter for  f(x) and  k is the level of approximation, such that:

Completely analogous a partial function  f�: \mathbb{Q} \rightarrow \mathbb{R} is lower semicomputable iff  -f(x) is upper semicomputable or equivalently if there exists a computable function  \phi(x,k) such that

If a partial function is both upper and lower semicomputable it is called computable.

See also

References